Abstract

The pharmacological basis of glutamate-induced [3H]D-aspartate release was investigated in isolated human, bovine and rabbit retinas. Isolated mammalian retinas were preloaded with [3H]D-aspartate and then prepared for studies of neurotransmitter release using the superfusion method. Release of [3H]D-aspartate was elicited by K+ (50 mM) or by L-glutamate. In bovine retinas, L-glutamate, but not D-glutamate induced an overflow of [3H]D-aspartate that was partially inhibited by low external calcium, omega-conotoxin (10 nM) or nitrendipine (1 microM). Metabotropic glutamate receptor (GLUR) agonists also evoked [3H]D-aspartate release in both bovine and human retinas whereas polyamines only enhanced the excitatory effects of L-glutamate on [3H]D-aspartate release. Antagonists of GLURs and the polyamine site inhibited L-glutamate evoked [3H]D-aspartate overflow with the following rank order of potency: MCPG >ifenprodil > AP-5 > arcaine> MK-801. In conclusion, L-glutamate-induces a stereoselective, calcium-dependent release of [3H]D-aspartate from isolated mammalian retinas that can be mimicked by GLUR agonists (and blocked by both receptor and polyamine site antagonists).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.