Abstract

Principal component analysis (PCA) multivariate analysis was applied to study the cytotoxic activity of essential oils from various species of the Pistacia genus on human tumor cell lines. In particular, the cytotoxic activity of essential oils obtained from P. lentiscus, P. lentiscus var. chia (mastic gum), P. terebinthus, P. vera, and P. integerrima, was screened on three human adenocarcinoma cell lines: MCF-7 (breast), 2008 (ovarian), and LoVo (colon). The results indicate that all the Pistacia phytocomplexes, with the exception of mastic gum oil, induce cytotoxic effects on one or more of the three cell lines. PCA highlighted the presence of different cooperating clusters of bioactive molecules. Cluster variability among species, and even within the same species, could explain some of the differences seen among samples suggesting the presence of both common and species-specific mechanisms. Single molecules from one of the most significant clusters were tested, but only bornyl-acetate presented cytotoxic activity, although at much higher concentrations (IC50 = 138.5 µg/mL) than those present in the essential oils, indicating that understanding of the full biological effect requires a holistic vision of the phytocomplexes with all its constituents.

Highlights

  • Herbal medicine is emerging as a holistic tool in novel personalized medicine approaches, especially in primary and secondary prevention [1]

  • The composition of the essential oils indicates consistency with the major terpenes known to be present in these species [7]

  • The aim of the work was not to identify biological activity in single terpenes, given that this particular cluster is shared by all cell lines and at the same time by more than one Pistacia species, we tested the cytotoxic activity of the pure compounds on LoVo cells, where the activity of the phytocomplexes seemed to be stronger

Read more

Summary

Introduction

Herbal medicine is emerging as a holistic tool in novel personalized medicine approaches, especially in primary and secondary prevention [1]. In addition to being a primary source of drugs, phytocomplexes, thanks to their multiple active components, can represent effective strategies to integrate pharmacological therapies or, like in Traditional Chinese Medicine, be themselves therapeutic multitarget agents [2,3]. Plants are a major source of chemopreventive phytochemicals [4]. Among these molecules, some terpenes have been shown to exert cytotoxic activity on tumoral cells in different in vitro, in vivo, and clinical studies [5,6,7,8,9]. D-Limonene, one of the most widespread natural monoterpenes, exerts in vitro anti-tumor activity against several cancer types: neuroblastoma, leukemia, breast, skin, liver, lung, and stomach cancer [10,11,12,13,14,15]. Other dietary monoterpenes, like geraniol, carvacrol, Molecules 2017, 22, 1336; doi:10.3390/molecules22081336 www.mdpi.com/journal/molecules

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.