Abstract

Different from traditional human activity recognition, human activity prediction aims to recognize an unfinished activity, typically in absence of explicit temporal progress status. In this paper, we propose a new human activity prediction approach by extending the recently proposed generalized time warping (GTW) [20], which allows an efficient and flexible alignment of two or more multi-dimensional time series. More specifically, for each activity video, either complete or incomplete, we first decompose it into a sequence of short video segments. Then, we represent each segment by the local spatial-temporal statistics using the classical bag-of-visual-words model. In this way, the comparison between a query sequence (i.e., containing an incomplete activity) and a reference sequence (i.e., containing a full activity) boils down to the problem of aligning their corresponding segment sequences. While GTW treats different portions of a sequence as equally important, our task is in favor of early portions since an incomplete activity video always aligns from the beginning of a complete one. Thus motivated, we develop a temporally-weighted GTW (TGTW) algorithm for the activity prediction problem by encouraging alignment in the early portion of an activity sequence. Finally, the similarity derived from TGTW is combined with the k-nearest neighbors algorithm for predicting the activity class of an input sequence. The proposed approach is evaluated on several publicly available datasets in comparison with state-of-the-art approaches. The experimental results and analysis clearly demonstrate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.