Abstract

Abstract Observations of 14 cases of radiation fog in the Hudson River valley in New York State are presented. Our emphasis is to connect the fog prediction problem to mechanisms in the nocturnal boundary layer that influence heat and moisture balances. Surface layer and boundary layer fogs are distinguished by the difference in dominant terms in the saturation specific humidity deficit budget. Fogs that persist longer than approximately 30 minutes are most frequently thicker than 50 m. The ultimate depth to which the fog grows is shown to be determined by initial conditions at sunset and by subsequent evolution of winds in the nocturnal boundary layer, as well as by surface transports and radiative cooling. Estimates of the surface and boundary layer heat budget are presented. Two new phenomena are identified: 1) A jump in specific humidity occurring during the early evening transition that shortens the time required to reach surface layer saturation; and 2) along-valley jetlike winds with maxima near 10...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.