Abstract

Mass spectroscopy analysis demonstrated that the HSPA1A protein is found in complex with the ZNF198 protein which is involved in a chromosome rearrangement with the FGFR1 gene in an atypical myeloproliferative disease. HSPA1A is a member of the HSP70 family of genes which has been shown to be inducible in a variety of circumstances. Exogenous expression of the ZNF198-FGFR1 fusion kinase gene as well as ZNF198 in a model cell system results in a large (>650-fold) increase in HSP70 mRNA levels. Using KNK437, a specific inhibitor of HSP70 transcription, we have demonstrated that an important function of HSPA1A is to stabilize the ZNF198 and ZNF198-FGFR1 proteins. In the absence of HSPA1A, specific functions of ZNF198-FGFR1 such as STAT3 phosphorylation is also lost. Treatment of cells with KNK437 in the presence of MG132, an inhibitor of proteasomal degradation of proteins, suggested that only the ZNF198-FGFR1 protein is subject to the proteasomal degradation pathway, while ZNF198 is not. These observations suggest an important role for HSPA1A in ZNF198 and ZNF198-FGFR1 mediated cellular function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.