Abstract

Automatic detection of safety helmet wearing is significant in ensuring safe production. However, the accuracy of safety helmet detection can be challenged by various factors, such as complex environments, poor lighting conditions and small-sized targets. This paper presents a novel and efficient deep learning framework named High-Resolution You Only Look Once (HR-YOLO) for safety helmet wearing detection. The proposed framework synthesizes safety helmet wearing information from the features of helmet objects and human pose. HR-YOLO can use features from two branches to make the bounding box of suppression predictions more accurate for small targets. Then, to further improve the iterative efficiency and accuracy of the model, we design an optimized residual network structure by using Optimized Powered Stochastic Gradient Descent (OP-SGD). Moreover, a Laplace-Aware Attention Model (LAAM) is designed to make the YOLOv5 decoder pay more attention to the feature information from human pose and suppress interference from irrelevant features, which enhances network representation. Finally, non-maximum suppression voting (PA-NMS voting) is proposed to improve detection accuracy for occluded targets, using pose information to constrain the confidence of bounding boxes and select optimal bounding boxes through a modified voting process. Experimental results demonstrate that the presented safety helmet detection network outperforms other approaches and has practical value in application scenarios. Compared with the other algorithms, the proposed algorithm improves the precision, recall and mAP by 7.27%, 5.46% and 7.3%, on average, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.