Abstract

A series of binary-doped CoSb3 with Te and Se/Sn bulk compounds Co4Sb[Formula: see text]TexSny/Sey ([Formula: see text] and 0.6, [Formula: see text] and 0.3), have been successfully prepared via a simple high pressure and high-temperature (HPHT) method. And, the influence of the doping elements on the microstructure of the samples synthesized under diverse pressures and the corresponding TE performance were studied in detail. Comparing with other preparation methods, the synthesis time of HPHT was acutely shortened. The obtained samples contain more grain boundaries, lattice disorder, dislocations and the possible “nanodot”, which have positive effect on reducing thermal conductivity. The experimental data indicate that the absolute values of Seebeck coefficient increases with pressure. What’s more, the thermal conductivities show a monotone decreasing trend as the synthesis pressure rises. The minimum value obtained is 1.93[Formula: see text]Wm[Formula: see text]K[Formula: see text] at normal temperature for Co4Sb[Formula: see text]Te[Formula: see text]Se[Formula: see text] prepared under 3[Formula: see text]GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.