Abstract

Halogenated disinfection byproducts (DBPs) are an unintended consequence of drinking water disinfection, and can have significant toxicity. XAD resins are commonly used to extract and enrich trace levels of DBPs for comprehensive, nontarget identification of DBPs and also for in vitro toxicity studies. However, XAD resin recoveries for complete classes of halogenated DBPs have not been evaluated, particularly for low, environmentally relevant levels (ng/L to low µg/L). Thus, it is not known whether levels of DBPs or the toxicity of drinking water might be underestimated. In this study, DAX-8/XAD-2 layered resins were evaluated, considering both adsorption and elution from the resins, for extracting 66 DBPs from water. Results demonstrate that among the 7 classes of DBPs investigated, trihalomethanes (THMs), including iodo-THMs, were the most efficiently adsorbed, with recovery of most THMs ranging from 50%-96%, followed by halonitromethanes (40%-90%). The adsorption ability of XAD resins for haloacetonitriles, haloacetamides, and haloacetaldehydes was highly dependent on the individual species. The adsorption capacity of XAD resins for haloacetic acids was lower (5%-48%), even after adjusting to pH 1 before extraction. Recovery efficiency for most DBPs was comparable with their adsorption, as most were eluted effectively from XAD resins by ethyl acetate. DBP polarity and molecular weight were the two most important factors that determine their recovery. Recovery of trichloromethane, iodoacetic acid, chloro- and iodo-acetonitrile, and chloroacetamide were among the lowest, which could lead to underestimation of toxicity, particularly for iodoacetic acid and iodo-acetonitrile, which are highly toxic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.