Abstract

In a WAG process (Water Alternate Gas), water and a miscible solvent (gas) are injected into a reservoir containing water and oil. The solvent will finger through the oil, leading to early breakthrough and poor recovery. Compared with a miscible flood, when only solvent is injected, fingering is supressed by the simultaneous injection of water, since this reduces the apparent mobility contrast between the injected and displaced fluids. The fingering in a miscible flood, with only hydrocarbon flowing, can be modelled successfully using a Todd and Longstaff fractional flow. In this paper, we demonstrate how to modify the effective Todd and Longstaff mobility ratio self-consistently to account for fingering in three component systems. The resultant empirical equations of flow are solved exactly in one dimension and are in excellent agreement with the averaged saturation and concentration profiles computed using two dimensional high resolution simulation, for a variety of injected water saturations, in both secondary and tertiary displacements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.