Abstract
ABSTRACT A growing body of research investigates how changes in weather shape individual choices about migration, yet highly variable results continue to challenge our understanding of the weather-migration nexus. We use a data-driven approach to identify which weather variables best predicted migration decisions of 54,986 individuals originating in Mexico between 1989 and 2016. Using supervised machine learning, we fit random forests to model migration choices based on individual, household, and community attributes in training data (three-fourths of the sample) from the Mexican Migration Project. We aggregated 36 annual weather variables at the community level and applied k-fold cross-validation to evaluate which models best predicted migration decisions. The top performing models were then applied to the test data (one-fourth of our sample). Three weather variables consistently out-performed others across models: minimum temperature during day, maximum temperature at night, and ‘growing degree days’ – the number of days with optimal growth temperatures for corn (the major crop for most communities). Our results demonstrate that weather is related to individual choices about migration and illustrate the utility of using principled variable selection which revealed that both customized (growing degree days for a particular crop) and generic (max-min temperatures) metrics can be predictive of migration behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.