Abstract

An individually rational agent will participate in a multi-agent coalition if the participation, given available information and knowledge, brings a payoff that is at least as high as the one achieved by not participating. Since agents? performance and skills may vary from task to task, the decisions about individual agent-task assignment will determine the overall performance of the coalition. Maximising the efficiency of the one-on-one assignment of tasks to agents corresponds to the conventional linear sum assignment problem, which considers efficiency as the sum of the costs or benefits of individual agent-task assignments obtained by the coalition as a whole. This approach may be unfair since it does not explicitly consider fairness and, thus, is unsuitable for individually rational agents? coalitions. In this paper, we propose two new assignment models that balance efficiency and fairness in task assignment and study the utilitarian, egalitarian, and Nash social welfare for task assignment in individually rational agents? coalitions. Since fairness is a relatively abstract term that can be difficult to quantify, we propose three new fairness measures based on equity and equality and use them to compare the newly proposed models. Through functional examples, we show that a reasonable trade-off between efficiency and fairness in task assignment is possible through the use of the proposed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.