Abstract

AbstractIncreasing proportions of fresh produce are being sold in modified atmosphere packs (MAP) with the aim of preserving product quality longer and reducing freight costs. A rigorous theoretical analysis was made of the transport phenomena across packaging film (composite, perforated, etc.) in order to find out whether polymeric film will permit a stationary modified atmosphere (MA) inside the pack, and if so when, and to investigate the effect of the size and shape of the holes in the perforated film. The continuity equations of the pack, for all diffusing species, were written and solved for stationary conditions, with the boundary conditions that species not involved in metabolic processes do not diffuse across polymeric film. After a detailed analysis of the transport phenomena across both continuous and perforated film, and of the metabolic rate processes, it transpires that no stationary conditions compatible with any MA can be found for continuous film, owing to the permeation characteristics of the film and the rate of the metabolic processes. With perforated film it is possible to find, at least for certain metabolic process rates, a stationary state where a constant MA is maintained inside the pack. A proposal is given, provided the rate of the metabolic process is known, for the design of a pack in terms of polymeric materials and of the pinhole size. Two case studies, strawberry and cabbage, are presented and discussed, along with the optimization of the polymeric film and the size and length of the pinholes of the packs. Another point raised deals with the advantages of using perforated film and/or of making holes or openings along the edges where the polymeric film is welded. Copyright © 2001 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.