Abstract

ABSTRACT We present a detailed study of stellar rotation in the massive 1.5 Gyr old cluster NGC 1846 in the Large Magellanic Cloud. Similar to other clusters at this age, NGC 1846 shows an extended main-sequence turn-off (eMSTO), and previous photometric studies have suggested it could be bimodal. In this study, we use MUSE integral-field spectroscopy to measure the projected rotational velocities (vsin i) of around $1400$ stars across the eMSTO and along the upper main sequence of NGC 1846. We measure vsin i values up to $\sim 250\, {\rm km\, s^{-1}}$ and find a clear relation between the vsin i of a star and its location across the eMSTO. Closer inspection of the distribution of rotation rates reveals evidence for a bimodal distribution, with the fast rotators centred around $v\sin i=140\, {\rm km\, s^{-1}}$ and the slow rotators centred around $v\sin i=60\, {\rm km\, s^{-1}}$. We further observe a lack of fast rotating stars along the photometric binary sequence of NGC 1846, confirming results from the field that suggest that tidal interactions in binary systems can spin-down stars. However, we do not detect a significant difference in the binary fractions of the fast and slowly rotating sub-populations. Finally, we report on the serendipitous discovery of a planetary nebula associated with NGC 1846.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.