Abstract

We present and analyze characteristics of the runaway electron flow in a high-voltage (the voltage rise rate of up to 1.5 MV/ns) air-filled electrode gap with a strongly nonuniform electric field. It is demonstrated that such a flow contains a high-energy electron component of duration not more than 10 ps. According to numerical simulations, runaway electron generation/termination is governed by impact ionization of the gas near the cathode and switching on/off a critical (sufficient for electrons to run away) electric field at the boundary of the expanding cathode plasma. The corresponding characteristic time estimated to be 2–3 ps is defined by the ionization rate at a critical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.