Abstract

Abstract DNA sequence alterations within DNA repeat domains inexplicably enhance the stability and delay the expansion of interrupted repeat domains. Here we propose mechanisms that rationalise such unanticipated outcomes. Specifically, we describe how interruption of a DNA repeat domain restricts the ensemble space available to dynamic, slip out, repeat bulge loops by introducing energetic barriers to loop migration. We explain how such barriers arise because some possible loop isomers result in energetically costly mismatches in the duplex portion of the repeat domain. We propose that the reduced ensemble space is the causative feature for the observed delay in repeat DNA expansion. We further posit that the observed loss of the interrupting repeat in some expanded DNAs reflects the transient occupation of loop isomer positions that result in a mismatch in the duplex stem due to ‘leakiness’ in the energy barrier. We propose that if the lifetime of such a low probability event allows for recognition by the mismatch repair system, then ‘repair’ of the repeat interruption can occur; thereby rationalising the absence of the interruption in the final expanded DNA ‘product.’ Our proposed mechanistic pathways provide reasoned explanations for what have been described as ‘puzzling’ observations, while also yielding insights into a biomedically important set of coupled genotypic phenomena that map the linkage between DNA origami thermodynamics and phenotypic disease states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.