Abstract

The new scalar resonance contribution to the 750 GeV diphoton excess observed at the LHC 13 TeV necessarily interferes with the continuum background in the $gg\to \gamma \gamma$. The interference has two considerable effects: (1) enhancing or suppressing diphoton signal rate due to the imaginary-part interference and (2) distorting resonance shape due to the real-part interference. From the best-fit study of two benchmark models (two Higgs doublets with $\sim$50 GeV widths and a singlet scalar with 5 GeV width, both extended with vector-like fermions), we find that the resonance contribution to the 750 GeV excess can be enhanced by a factor of 2(1.6) for 3(6) fb signal rate and the 68%(95%) CL best-fit mass range can shift by 1-4 (any ${\cal O}$(1)) GeV. If the best-fit excess rate decreases with future data, the interference effects will become more significant. The inevitable interferences can also provide a consistency check of a resonance hypothesis, whether or not future precision shape measurements confirm a Breit-Wigner shape or discover interesting deviations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.