Abstract

Three-dimensional (3D) reconstruction from a single esophageal scanning position requires a stable relationship between the probe and the heart. The purpose of this study was to examine the movement of a transesophageal echocardiographic probe during 3D image acquisition. A new dual-axis multiplane probe was used that includes a miniature (6 × 6 × 9 mm) magnetic sensor in the tip. The sensor identifies the probe's 3D position and 3D orientation in space with respect to the location of a magnetic field generator placed beneath the subject. In vivo 3D scanning was performed in five anesthetized, ventilated dogs, with positional determinations acquired every 66 msec. Probe movement was estimated by computing the deviations of each x, y, and z position and orientation determination, compared with the average values during each 3D scan or cardiac cycle. Ten 3D scans were analyzed, involving 263 cardiac cycles and 2328 determinations. The range and SD of the translational movement of the transducer were 2.3 and 0.8 mm, 1.7 and 0.5 mm, and 2.4 and 0.7 mm in x, y, and z directions, respectively, during 3D scanning. Translational movement was more dominant than was rotational movement. Misregistration of three-dimensional reconstructions may be due to subtle probe movement. The ability to monitor probe movement may be helpful in optimizing 3D data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.