Abstract

Recent time-resolved studies have revealed the switching behavior of single photosynthetic light-harvesting complexes. In this work, we suggest a diffusion-controlled model describing essential protein dynamics underlying this switching. The calculated blinking statistics are compared with the experimental result and not only reproduce the power-law behavior at intermediate times, but also follow the experimentally observed deviations from such behavior on a shorter time scale. We propose that the coupling of fast protein dynamics to a specific slow coordinate is at the basis of regulatory switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.