Abstract

Binders containing portlandite (Ca(OH)2) can take up carbon dioxide (CO2) from dilute flue gas streams (<15% CO2, v/v), thereby forming carbonate compounds with binding attributes. While the carbonation of portlandite particulates is straightforward, it remains unclear how CO2 transport into monoliths is affected by microstructure and pore moisture content. Therefore, this study elucidates the influences of pore saturation and CO2 diffusivity on the carbonation kinetics and strength evolution of portlandite-enriched composites (“mortars”). To assess the influences of microstructure, composites hydrated to different extents and conditioned to different pore saturation levels (Sw) were exposed to dilute CO2. First, reducing saturation increases the gas diffusivity and carbonation kinetics so long as saturation exceeds a critical value (Sw,c ≈ 0.10) independent of microstructural attributes. Second, careful analysis reveals that both traditional cement hydration and carbonation offer similar levels of streng...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.