Abstract
The present-day state and future of the Antarctic Ice Sheet depend on the rate at which the ocean melts its fringing ice shelves. Ocean heat must cross many physical and dynamical barriers to melt ice shelves, with the last of these being the ice-ocean boundary layer. This review summarizes the current understanding of ice-ocean boundary-layer dynamics, focusing on recent progress from laboratory experiments, turbulence-resolving numerical simulations, novel observations, and the application to large-scale simulations. The complex interplay between buoyant meltwater and external processes such as current shear leads to the emergence of several melting regimes that we describe, as well as freezing processes. The remaining challenges include developing new parameterizations for large-scale ice-ocean models based on recent advances and understanding the coevolution of melt and basal topography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.