Abstract

Plant growth regulators are synthetic compounds that have become a significant and technical guarantee for agricultural productivity. In China, "Jindeli", which contains active elements of ethephon and cycocel (EC), has been proven to prevent maize stem elongation, improve maize stem thickness, stem morphology and mechanical strength, root growth, lodging resistance, and yield under various cultivation models. Diethyl aminoethyl hexanoate (DA-6) can promote cell division and growth. From 2020–2021, four growth regulators sprays were used to conduct a field experiment; G1: water spraying; G2: EC spraying; G3: DA-6 spraying; G4: EC+DA-6 spraying under two cultivation models; R: ridge covered with plastic film mulching and T: traditional flat planting without plastic mulching. The results indicated that RG4 treatment considerably decreased plant height, internode length, ear height, lodging rate, and center of gravity height, while improved the internode bending strength, cross-sectional area, cortical thickness, and stem vascular bundles as compared with rest of all other treatments. RG4 treatment considerably improved internode diameter, stem mechanical strength, filling degree, root growth, mean tilt angle, and lignin content, while significantly reducing LAI. In addition, RG4 considerably enhanced the quality of corn stems, such as increasing mechanical properties and enhancing the compressive strength of corn stalks that content of hemicellulose, cellulose, and lignin has been increased. Furthermore, RG4 treatment significantly improved grain yield by optimizing leaf layer structure and increasing bleeding saps levels, increasing the grains per row and ear. Thus, under the RG4 treatment maize lodging rate was decreased 72.1%, and increased WUE (52.8%), and grain yield (46.6%). In conclusion, the results clearly demonstrate that in the semi-arid regions risk of lodging can be avoided by spraying EC+DA-6 with ridge covered plastic film mulching to the enriched stalk quality, shaping plant morphological characteristics, and proving a stable cultivation model to improving maize productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.