Abstract
Carcinogens induce carcinogen-specific genetic instability (defects in DNA repair). According to the ‘direct-selection’ model, defects in DNA repair per se provide an immediate growth advantage. According to the ‘associated-selection’ model, carcinogens merely select for cells with adaptive mutations. Like any mutations, adaptive mutations occur predominantly in genetically unstable cells. The ‘associated-selection’ model predicts that carcinogen-driven selection minimizes cytotoxic but maximizes mutagenic effects of carcinogens. A purely mutagenic (neither cytotoxic, nor cytostatic) environment will favor effective DNA repair, whereas any growth-limiting conditions (telomerase deficiency, anticancer drugs) will select for genetically unstable cells. Genetic instability is a postmark of selective pressure rather than a hallmark of cancer per se. Once selected, genetic instability facilitates the development of resistance to any other growth-limiting conditions. As an example, a putative link between prior exposure to carcinogens and the ability to develop a telomerase-independent growth is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.