Abstract

In atopic diseases, the epithelium releases cytokines and chemokines that initiate skin inflammation. Atopic dermatitis (AD) is characterized by a disrupted epidermal barrier and is triggered or exacerbated by environmental stimuli such as house dust mite (HDM) allergens. The proinflammatory cytokine interleukin 33 (IL-33) plays an important role in the pathogenesis of AD, but how IL-33 production in keratinocytes is elicited by HDM is unknown. To that end, here we stimulated monolayer-cultured human keratinocytes and human living skin equivalents with Dermatophagoides pteronyssinus HDM extract to investigate its effects on IL-33 production from keratinocytes. The HDM extract induced intracellular expression of IL-33 and modulated its processing and maturation, triggering rapid IL-33 release from keratinocytes. Group 1 HDM allergen but not group 2 HDM allergen elicited IL-33 production. An ATP assay of keratinocyte culture supernatants revealed an acute and transient accumulation of extracellular ATP immediately after the HDM extract stimulation. Using the broad-spectrum P2 antagonist suramin, the specific purinergic receptor P2Y2 (P2RY2) antagonist AR-C118925XX, and P2RY2-specific siRNA, we discovered that the HDM extract-induced IL-33 expression was mainly dependent on extracellular ATP/P2Y2 signaling mediated by transactivation of epidermal growth factor receptor, followed by activation of the ERK kinase signaling pathway. Moreover, HDM extract–induced release of 25-kDa IL-33 from the keratinocytes depended on an extracellular ATP/P2 signaling–mediated intracellular Ca2+ increase. Our study demonstrates the new mechanism controlling the induction and maturation of keratinocyte-produced IL-33 by HDM allergens, an innate immune process that might play a role in AD development or severity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.