Abstract
Source mask optimization (SMO) is a useful technique for printing the integrated circuit (IC) on a wafer with increasingly smaller feature size. However, complex SMO algorithms generally lead to undesirably long runtime resulting from an optimization of largely identical regions over the whole mask pattern. In this work, a weighted SMO scheme incorporating both an awareness of the hotspots and robustness against process variations is proposed. We show how optimal solutions are reached with fewer iterations by applying various degrees of correction in the corresponding regions. The proposed method includes identifying the hotspots and combining a weight matrix to the cost function for adjustment and control. Simulation results are compared with the mask optimization (under a fixed source) and conventional SMO to illustrate the performance improvement in terms of pattern fidelity, convergence rate and process window size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.