Abstract
Recently, it has been shown that large stacks of intrinsic Josephson junctions in Bi2Sr2CaCu2O8 emit synchronous THz radiation, the synchronization presumably triggered by a cavity resonance. To investigate this effect we use low temperature scanning laser microscopy to image electric field distributions. We verify the appearance of cavity modes at low bias and in the high input-power regime we find that standing-wave patterns are created through interactions with a hot spot, possibly pointing to a new mode of generating synchronized radiation in intrinsic Josephson junction stacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.