Abstract
A novel thermomechanical process to manufacture hot-rolled transformation-induced plasticity (TRIP) steels was developed based on dynamic transformation of undercooled austenite (DTUA). Between DTUA and the isothermal bainitic treatment, only one-step controlled-cooling was required. The microstructure evolution of hot-rolled C-Mn-Si and C-Mn-Al-Si TRIP steels based on DTUA was investigated by hot uniaxial compression tests using a Gleeble1500 simulation test machine. The results indicated that during DTUA, the kinetics of ferrite formation was fast, the volume fraction of ferrite formed was determined by applied strain. In comparison with the process based on static transformation of austenite, a more uniform multiphase microstructure with fine ferrite grains was formed, the bainite packets were small and had relatively random orientations, the retained austenite distributed uniformly and had relatively high volume fraction. Hot-rolled TRIP steels based on DTUA demonstrated better mechanical properties, especially for C-Mn-Al-Si TRIP steel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.