Abstract

Nowadays, ≈90% of new drug candidates under development are poorly bioavailable due to their low solubility and/or permeability. Herein, a natural liquid small molecule trans-anethole (TA) is introduced into the drug-polymer system lurasidone (LUS)-poly (1-vinylpyrrolidone-co-vinyl acetate) (VA64), notably improving the compatibility of components for the successful preparation of amorphous solid dispersion (ASD) and facilitating the formation of self-emulsifying drug delivery system (SEDDS) during dissolution. LUS-TA-VA64 ASD shows enhanced supersaturation with a long maintenance time of at least 24 h over pure LUS. The strong non-covalent force between VA64 (as emulsifier) and TA (as oil phase)/ water promotes the self-assembly of submicron emulsion and ensures its stability for at least 10 h. Compared to the commercial salt form of LUS, the ASD shows twofold increase in peak plasma concentration (Cmax ) and area under plasma concentration-time profiles (AUC), 1.5-fold increase in peak time (Tmax ), and twofold decrease in AUC-based coefficient of variation (CV) (59%→26%) after a single oral dose to a rabbit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.