Abstract

The vibrational relaxation of hydroxyl radicals in the A (2)Sigma(+) (v=1) state has been studied using the semiclassical perturbation treatment at cryogenic temperatures. The radical is considered to be trapped in a closest packed cage composed of the 12 nearest argon atoms and undergoes local translation and hindered rotation around the cage center. The primary relaxation pathway is towards local translation, followed by energy transfer to rotation through hindered-to-free rotational transitions. Free-to-free rotational transitions are found to be unimportant. All pathways are accompanied by the propagation of energy to argon phonon modes. The deexcitation probability of OH(v=1) is 1.3 x 10(-7) and the rate constant is 4.7 x 10(5) s(-1) between 4 and 10 K. The negligible temperature dependence is attributed to the presence of intermolecular attraction (>>kT) in the guest-host encounter, which counteracts the T(2) dependence resulting from local translation. Calculated relaxation time scales are much shorter than those of homonuclear molecules, suggesting the importance of the hindered and free motions of OH and strong guest-host interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.