Abstract

Subadult male Weddell seals were instrumented with microcomputer-based backpacks and were then monitored during voluntary diving and recovery periods in McMurdo Sound, Antarctica. Depth and duration of diving, swim speed, and dive pattern were routinely monitored. An indwelling venous catheter was used to collect plasma samples at various time periods before and following diving episodes, so that changes in plasma concentrations of hormones and of metabolites could be measured. Adrenergic and nitroxidergic regulatory effects were assessed indirectly by measuring concentration changes in catecholamine and cyclic guanosine monophosphate (cGMP), respectively. The studies found that (i), except for dives of less than several minutes, epinephrine and norepinephrine both increased as a function of diving duration, then rapidly decreased during recovery (with a half time of about 10 min), (ii) that the changes in catecholamine concentrations correlated with splenic contraction and an increase in circulating red blood cell mass (hematocrit), (iii) that the changes in catecholamines, especially [epinephrine], were inversely related to insulin/ glucagon ratios, which mediated a postdiving hyperglycemia, and (iv) that in long dives (but not short ones) the changes in catecholamines correlated with increasing reliance on anaerobic metabolism, indicated by increased plasma lactate concentrations. These diving-catecholamine relationships during voluntary diving at sea were similar to those observed during enforced submergence (simulated diving) under controlled laboratory conditions. At the end of diving, even while catecholamine concentrations were still high, many of the above effects were rapidly reversed and the reversal appeared to correlate with accelerated nitric oxide production, indirectly indicated by increased plasma cGMP concentrations. Taken together, the data led to the hypothesis of important adrenergic regulation of the diving response in seals, with rapid reversal at the end of diving and during recovery being regulated by nitroxidergic mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.