Abstract

We compare global water vapor observations from Microwave Limb Sounder (MLS) and simulations with the Lagrangian chemical transport model CLaMS (Chemical Lagrangian Model of the Stratosphere) to investigate the pathways of water vapor into the lower stratosphere during Northern Hemisphere (NH) summer. We find good agreement between the simulation and observations, with an effect of the satellite averaging kernel especially at high latitudes. The Asian and American monsoons emerge as regions of particularly high water vapor mixing ratios in the lower stratosphere during boreal summer. In NH midlatitudes and high latitudes, a clear anticorrelation between water vapor and ozone daily tendencies reveals a large region influenced by frequent horizontal transport from low latitudes, extending up to about 450K during summer and fall. Analysis of the zonal mean tracer continuity equation shows that close to the subtropics, this horizontal transport is mainly caused by the residual circulation. In contrast, at higher latitudes, poleward of about 50°N, eddy mixing dominates the horizontal water vapor transport. Model simulations with transport barriers confirm that almost the entire annual cycle of water vapor in NH midlatitudes above about 360K, with maximum mixing ratios during summer and fall, is caused by horizontal transport from low latitudes. In the model, highest water vapor mixing ratios in this region are clearly linked to horizontal transport from the subtropics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.