Abstract
PurposeThis paper seeks to present recent work demonstrating the feasibility of Microbots' mobility in rough terrain. Microbots are a new search and rescue concept based on the deployment of teams of small spherical mobile robots. In this concept, hundreds to thousands of cm‐scale, sub‐kilogram Microbots are released over a search site such as collapsed building rubble or caves. Microbots use hopping, bouncing, and rolling to infiltrate subterranean spaces in search of possible survivors.Design/methodology/approachThe feasibility of the Microbot mobility concept is evaluated through laboratory prototypes and mobility simulations.FindingsExperimental studies have demonstrated the feasibility of using dielectric elastomer actuators (DEAs) to generate autonomous hops. High‐efficiency hydrogen fuel cells were shown to be able to power DEAs. Simulation results show that Microbots of proper diameter and hop height can successfully traverse very rough terrains.Research limitations/implicationsThe implication of this research is that small hopping robots are appropriate for certain search and rescue missions. The limitation of the research to date is that issues of control, path planning, and communication have not yet been addressed.Practical implicationsKey technologies of the Microbot mobility, that use high‐energy‐density micro fuel cells combined with low cost and lightweight DEAs, are feasible. These technologies have the potential to make a significant impact on the search and rescue robots.Originality/valueThese results suggest that a team of Microbots‐based DEAs and micro fuel cells can be a useful and effective tool for search and rescue operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.