Abstract

Resistivity, ρ(T, x), of Cu2Zn(SnxGe1−x)Se4 (CZTGeSe) single crystals with x = 0–1, investigated at temperatures between T ~ 10–320 K, exhibits an activated character within the whole temperature range, attaining a minimum at x = 0.47. Magnetoresistance (MR) of CZTGeSe with x = 0.26, 0.47 and 0.64 is positive (pMR) in all measured fields of B up to 20 T at any T between ~40–320 K, whereas MR of samples with x = 0 and 1 contains a negative contribution (nMR). The dependence of ρ(T) at B = 0 gives evidence for a nearest-neighbor hopping (NNH) conductivity in high-temperature intervals within T ~ 200–320 K depending on x, followed by the Mott variable-range hopping (VRH) charge transfer with lowering temperature. The pMR law of lnρ(B) B2 is observed in both hopping conductivity regimes above, provided that the nMR contribution is absent or saturated. Analysis of the ρ(T) and MR data has yielded the values of the NNH activation energy and the VRH characteristic temperature, as well as those of the acceptor band width, the acceptor concentration, the localization radii of holes and the density of the localized states (DOS) at the Fermi level. All the parameters above exhibit a systematic non-monotonous dependence on x. Their extremums, lying close to x = 0.64, correspond to the minimum of a lattice disorder along with the maximum of DOS and of the acceptor concentration, as well as a highest proximity to the metal–insulator transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.