Abstract
A kind of three-species system with Holling II functional response and two delays is introduced. Its local stability and the existence of Hopf bifurcation are demonstrated by analyzing the associated characteristic equation. By using the normal form method and center manifold theorem, explicit formulas to determine the direction of the Hopf bifurcation and the stability of bifurcating periodic solution are also obtained. In addition, the global existence results of periodic solutions bifurcating from Hopf bifurcations are established by using a global Hopf bifurcation result. Numerical simulation results are also given to support our theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.