Abstract

<abstract><p>In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.