Abstract

A traditional method for assessing the flow rate in ventilation systems is based on multiple readings of velocity or velocity pressure (VP) (usually 10 or 20 points) taken in ductwork sections located away from fittings (> seven × diameters of straight duct). This study seeks to eliminate the need for a multiple-point evaluation and replace it with a simplified method that requires only a single measurement of hood static pressure (SPh) taken at a more accessible location (< three × diameters of straight duct from the hood entry). The SPh method is widely used for the assessment of flow rate in simple hoods. However, industrial applications quite often use compound hoods that are regularly of the slot/plenum type. For these hoods, a “compound coefficient of entry” has not been published, which makes the use of the hood static pressure method unfeasible. This study proposes a model for the computation of a “compound coefficient of entry” and validates the use of this model to assess flow rate in two systems of well-defined geometry (multi-slotted/plenum and single-slotted/tapered or “fish-tail” types). When using a conservative value of the slot loss factor (1.78), the proposed model yielded an estimate of the volumetric flow rate within 10% of that provided by a more comprehensive method of assessment. The simplicity of the hood static pressure method makes it very desirable, even in the upper range of experimental error found in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.