Abstract

We construct a class $\Theta_{\mathscr{R}}$ of homomorphisms from a Specht module $S_{\mathbb{Z}}^{\lambda}$ to a signed permutation module $M_{\mathbb{Z}}(\alpha|\beta)$ which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any $\phi \in \operatorname{Hom}_{{\mathbb{Z}}\mathfrak{S}_{n}}\big(S_{\mathbb{Z}}^\lambda, M_{\mathbb{Z}}(\alpha|\beta)\big)$ lies in the $\mathbb{Q}$-span of $\Theta_{\text{sstd}}$, a subset of $\Theta_{\mathscr{R}}$ corresponding to semistandard $\lambda$-tableaux of type $(\alpha|\beta)$. We also study the conditions for which $\Theta^{\mathbb{F}}_{\mathrm{sstd}}$ - a subset of $\operatorname{Hom}_{\mathbb{F}\mathfrak{S}_{n}}\big(S_{\mathbb{F}}^\lambda,M_{\mathbb{F}}(\alpha|\beta)\big)$ induced by $\Theta_{\mathrm{sstd}}$ - is linearly independent, and show that it is a basis for $\operatorname{Hom}_{\mathbb{F}\mathfrak{S}_{n}}\big(S_{\mathbb{F}}^\lambda,M_{\mathbb{F}}(\alpha|\beta)\big)$ when $\mathbb{F}\mathfrak{S}_{n}$ is semisimple.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.