Abstract
C(sp3)‐H and O−H bond breaking steps in the oxidation of 1,4‐cyclohexadiene and phenol by a Au(III)‐OH complex were studied computationally. The analysis reveals that for both types of bonds the initial X−H cleavage step proceeds via concerted proton coupled electron transfer (cPCET), reflecting electron transfer from the substrate directly to the Au(III) centre and proton transfer to the Au‐bound oxygen. This mechanistic picture is distinct from the analogous formal Cu(III)‐OH complexes studied by the Tolman group (J. Am. Chem. Soc. 2019, 141, 17236–17244), which proceed via hydrogen atom transfer (HAT) for C−H bonds and cPCET for O−H bonds. Hence, care should be taken when transferring concepts between Cu−OH and Au−OH species. Furthermore, the ability of Au−OH complexes to perform cPCET suggests further possibilities for one‐electron chemistry at the Au centre, for which only limited examples exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.