Abstract

Contact problems with Coulomb friction in linear elasticity are notoriously difficult, and their mathematical analysis is still largely incomplete. In this paper, a model problem with heterogeneous friction coefficient is considered in two-dimensional elasticity. For this model problem, an existence and uniqueness result is proved, relying heavily on harmonic analysis. A complete and rigorous homogenization analysis can be performed in the case of a highly oscillating friction coefficient, being the first result in that direction. The Coulomb law is found to hold in the limit, and an explicit formula is provided to calculate the effective friction coefficient. This effective friction coefficient is found to differ from the spatial average, showing an influence of the coupling between friction and elasticity on the homogenized limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.