Abstract

Litter decomposition is a major fundamental ecological process that regulates nutrient cycling, thereby affecting net ecosystem carbon (C) storage as well as primary productivity in forest ecosystems. Litter decomposes in its home environment faster than in any other environment. However, evidence for this phenomenon, which is called the home-field advantage (HFA), has not been universal. We provide the first HFA quantification of litter decomposition and nutrient release through meta-analysis of published data in global forest ecosystems. Litter mass loss was 4.2 % faster on average, whereas nitrogen (N) release was 1.7 % lower at the home environment than in another environment. However, no HFA of phosphorus (P) release was observed. Broadleaf litter (4.4 %) had a higher litter mass loss HFA than coniferous litter (1.0 %). The positive HFA of N release was found in the coniferous litter. Mass loss HFA was significantly and negatively correlated with the initial lignin:N litter ratio. The litter decomposition and N release HFAs were obtained when mesh size ranged from 0.15 mm to 2.0 mm. The HFA of litter decomposition increased with decomposition duration during the early decomposition stage. The HFA of N release was well correlated with mass loss, and the greatest HFA was at mass loss less than 20 %. Our results suggest that the litter decomposition and N release HFAs are widespread in forest ecosystems. Furthermore, soil mesofauna is significantly involved in the HFA of litter decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.