Abstract

Homotopy continuation methods have been proved to be an efficient and reliable class of numerical methods for solving systems of polynomial equations which occur frequently in various fields of mathematics, science, and engineering. Based on the successful software package Hom4PS-2.0 for solving such polynomial systems, Hom4PS-3 has a new fully modular design which allows it to be easily extended. It implements many different numerical homotopy methods including the Polyhedral Homotopy continuation method. Furthermore, it is capable of carrying out computation in parallel on a wide range of hardware architectures including multi-core systems, computer clusters, distributed environments, and GPUs with great efficiency and scalability. Designed to be user-friendly, it includes interfaces to a variety of existing mathematical software and programming languages such as Python, Ruby, Octave, Sage and Matlab.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.