Abstract

We study the binding of a holon to a doublon in a half-filled Hubbard model as the mechanism of the zero-temperature metal-insulator transition. In a spin polarized system and a non-bipartite lattice a single holon-doublon (HD) pair exhibits a binding transition (e.g., on a face-centred cubic lattice), or a sharp crossover (e.g., on a triangular lattice) corresponding well to the standard Mott transition in unpolarized systems. We extend the HD-pair study towards non-polarized systems by considering more general spin background and by treating the finite HD density within a BCS-type approximation. Both approaches lead to a discontinuous transition away from the fully polarized system and give density correlations consistent with numerical results on a triangular lattice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call