Abstract
We propose a holographic correspondence of the flat spacetime based on the behavior of the entanglement entropy and the correlation functions. The holographic dual theory turns out to be highly nonlocal. We argue that after most part of the space is traced out, the reduced density matrix gives the maximal entropy and the correlation functions become trivial. We present a toy model for this holographic dual using a nonlocal scalar field theory that reproduces the same property of the entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes in asymptotically flat spacetimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.