Abstract

Several coccolithophore species are known to exhibit heteromorphic life cycles. In certain species, notably Emiliania huxleyi, the heterococcolith‐bearing phase alternates with a non‐calcifying stage, whereas in others the heterococcolith‐bearing phase alternates with a holococcolith‐bearing phase. Heterococcolithophore‐holococcolithophore life cycles have previously been observed for only one species in culture, but have also been inferred from an increasing number of observations of combination coccospheres. 18S rDNA sequences from pure cultures of both the heterococcolith‐bearing and holococcolith‐bearing phases of Coccolithus pelagicus were identical, providing an additional indication of their identity as different life cycle stages of the same species. Flow cytometric analyses have been undertaken on SybrGreen‐stained nuclei isolated from pure cultures of the two phases of four coccolithophore species (Coccolithus pelagicus, Calcidiscus leptoporus, Coronosphaera mediterranea and Emiliania huxleyi) in order to determine relative DNA content. Results confirm the hypothesis that holococcolithophore‐heterococcolithophore life cycles are haplo‐diploid in nature. Light microscope observations of the processes of sexual fusion and meiosis are reported for two of the experimental species. The results are discussed in the context of the evolution of bio‐mineralization in the coccolithophores and the possible ubiquity of haplo‐diploidy in the haptophytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.