Abstract

The frequency and timing of Holocene paleofloods in the hilly terrain of New Hampshire and Maine are identified using 14C and high-resolution (cm-by-cm) particle size analysis of sediment cores taken from six post-glacial lakes (~0.1–1.4 km2). A total of nine sediment cores (4.5–6 m long) were taken near the base of stream delta foreslopes. End-member modeling of the particle-size frequency distributions from each core produces 3–5 representative end member distributions, or end members (EMs). Concurrent increases in mean and median particle size, and in the relative abundance of the coarsest EM(s), indicate increased transport capacity of inflowing tributaries, resulting from rainstorms. In all 9 cores, particle size data show clear signs of episodic, high-energy sediment transport events where proxy measurements such as loss-on-ignition and magnetic susceptibility do not, demonstrating the sensitivity of particle size analysis in paleostorm investigations made using lake sediment cores. Floods caused by storms in this region peaked around 1.4, 2.1, 3.0, 3.9, 6.8, 8.2, and 11.5 ka cal BP, and presently appear to be increasing in frequency. Periods of storminess in New Hampshire and Maine correlate well with other records of precipitation and climate in the northeastern United States during the Holocene, further supporting modern records which show tropical air masses as a primary driver of extreme precipitation events in New England (Ludlum 1996; Konrad 2001; Sisson and Gyakum 2004).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.