Abstract
Two cores, one 1141-cm long (An-S) and the other 885-cm long (An-A), were retrieved from Anguli-nuur Lake (41°18′–24′N, 114°20′–27′E, ∼ 1315 masl), one of the largest lakes in the transition zone between a semi-humid and semi-arid climate parallel to the present limit of the southeast monsoon along the southeastern Inner Mongolia Plateau in north China. Mineral-magnetic parameters ( χ lf, ARM, IRM 300mT, SIRM and IRM − 300mT ) were measured on An-S and two additional parameters ( χ ARM and HIRM) and four inter-parametric ratios (χ ARM/SIRM, IRM 300mT/SIRM, IRM − 300mT /SIRM and SIRM/ χ lf) were calculated. Potential sources of these lake sediments (catchment soils and dune materials close to the lake and in a distant sand plain) were sampled, and the magnetic properties of the surface-material specimens were measured. A chronological model was developed for An-S by comparing and combining AMS 14C dates of An-S with 137Cs, 210Pb and AMS 14C dates of An-A. With the help of surface-material magnetism, the magnetic data of An-S in combination with particle size, TOC and C/N and pollen analyses indicate the environmental changes during the last ∼ 10,000 years around this lake. Conditions began to ameliorate at 10,900 cal. yr BP (9600 14C yr BP) and thus relatively wet and warm environments prevailed during 10,900–8900 cal. yr BP (9600–8000 14C yr BP). The Holocene optimum or the wettest and warmest conditions, was during 8900–7400 cal. yr BP (8000–6500 14C yr BP). The environment began to deteriorate from 7400 cal. yr BP (6500 14C yr BP) and the driest and coolest conditions occurred during 2200–480 cal. yr BP. There may have been a minor amelioration after 480 cal. yr BP. The inferred changes in palaeoenvironmental conditions around Anguli-nuur Lake are broadly in agreement with those around most other sites on the Inner Mongolia Plateau.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.