Abstract
Two sediment cores recovered in the central part of Daihai Lake in north-central China were analysed at 2- to 4-cm intervals for grain-size distribution. Grain-size distributions of the lake sediments are inferred to be a proxy for past changes in East Asian monsoon precipitation, such that greater silt-size percentage and higher median grain size reflect increased monsoonal precipitation rates. The grain-size record of Daihai Lake sediments spanning the last ca 10,000 yr indicates that the monsoonal precipitation in the lake region can be divided into three stages: the Early, Middle and Late Holocene. During the Early Holocene before ca 7900 cal yr BP, the median grain size (Md) and the silt-fraction content were relatively low and constant, suggesting relatively low precipitation over the lake region. The Middle Holocene between ca 7900 and 3100 cal yr BP was marked by intensified and highly variable monsoonal precipitation, as indicated by high and variable Md values and silt contents of the lake sediments. During this period, average precipitation rate gradually increased from ca 7900 to 6900 cal yr BP, displayed intense oscillations between ca 6900 and 4400 cal yr BP, and exhibited a decreasing trend while fluctuating from ca 4400 to 3100 cal yr BP. Although generally high during the Middle Holocene, both the Md and the silt content assumed distinctly low values at the short intervals of ca 6500–6400, 6000–5900, 5700–5600, 4400–4200 cal yr BP, implying that monsoonal precipitation might have been significantly reduced during these intervals. During the Late Holocene since ca 3100 cal yr BP, grain-size values suggest that precipitation decreased. However, during the Late Holocene, relatively higher Md values and silt contents occurring between ca 1700 to 1000 cal yr BP may denote an intensification of hydrological cycles in the lake area. Changes in the East Asian monsoonal precipitation were not only directly linked with the changing seasonality of solar insolation resulting from progressive changes in the Earth's orbital parameters, but also may have been closely related to variations in the temperature and size of the Western Pacific Warm Pool, in the intensity of the El Nino–Southern Oscillation, and in the path and strength of the North Equatorial Current in the western Pacific.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.