Abstract
Holocene climatic variability was studied in a 9500-year lake-sediment sequence from the Abisko region in Swedish Lapland, using the oxygen-isotope ratio in diatom biogenic silica (d18Osi). Oxygen-and hydrogen-isotope ratios of waters from the Abisko area suggest that in this region the evaporative flux is small and the isotopic composition of most lakes reflects that of the local precipitation. The hydrological setting of the region and sensitivity analysis of isotopic response to changing climatic parameters such as humidity, inflow and evaporation show that the downcore diatom d18Osi record is primarily controlled by changes in the summer isotopic composition of the lake water. The overall 3.5‰ depletion in d18Osi since the early Holocene is interpreted as an increase in the influence of the Arctic polar continental air mass that carries depleted precipitation. We estimate that this change is associated with a 2.5–4°C cooling that has occurred since the early Holocene. In general, the diatom d18Osi record resembles the average annual air temperature reconstructed for the Greenland ice core GISP2, especially during the past 4000 years, with a pronounced cooling starting at 2000 years BP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.