Abstract
A novel "structural difference-based selective etching" strategy has been developed to fabricate hollow/rattle-type mesoporous nanostructures, which was achieved by making use of the structural differences, rather than traditional compositional differences, between the core and the shell of a silica core/mesoporous silica shell structure to create hollow interiors. Highly dispersed hollow mesoporous silica spheres with controllable particle/pore sizes could be synthesized by this method, which show high loading capacity (1222 mg/g) for anticancer drug (doxorubicin). Hemolyticity and cytotoxicity assays of hollow mesoporous silica spheres were conducted, and the synthesized hollow mesoporous silica spheres with large pores show ultrafast immobilization of protein-based biomolecules (hemoglobin). On the basis of this strategy, different kinds of heterogeneous rattle-type nanostructures with inorganic nanocrystals, such as Au, Fe(2)O(3), and Fe(3)O(4) nanoparticles, as the core and mesoporous silica as the shell were also prepared. This strategy could be extended as a general approach to synthesize various hollow/rattle-type nanostructures by creating adequate structural differences between cores and shells in core/shell structures in nanoscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.