Abstract

The marine mussel-inspired properties of catechol, adhesiveness and cohesiveness, have been applied with pH control to fabricate hollow particles using a silica core and catechol-modified hyaluronic acid (HA-CA) shell for an anticancer drug carrier. The competition between adhesive and cohesive properties of catechol with different pH values leads to various structures, a rough catechol modified HA (HA-CA) shell at pH 5.5, monodisperse spherical silica@HA-CA particles at pH 7.4, and an amorphous HA-CA layer at pH 8.5. The redox transition of catechol with pH is a key factor modulating the behavior of the HA-CA shell on the silica core, which induces strong adhesion of HA-CA to silica at pH 5.5 and structural hardness with cohesive coupling at pH 7.4. In addition, after core removal, the hollow HA-CA particles are followed by loading of anticancer drug, doxorubicin (DOX). DOX loaded HA-CA particles show pH-triggered release behavior and dramatic cytotoxic effect indicating that they are a promising novel anticancer drug carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.