Abstract

Designing nanostructured electrocatalysts for selective transfer hydrogenation of α, β-unsaturated aldehydes with water as the hydrogen source is highly desirable. Here, a facile self-templating strategy is designed for the synthesis of CoS2 and CoS2-x nanocapsules (NCs) as efficient cathodes for selective transfer hydrogenation of cinnamaldehyde, a model α, β-unsaturated aldehyde. The hollow porous structures of NCs are rich in active sites and improve mass transfer, resulting in high turnover frequency. The specific adsorption of the styryl block on pristine CoS2 NCs is conducive to the selective formation of half-hydrogenated hydrocinnamaldehyde with 91.7% selectivity, and the preferential adsorption of the C = O group induced by sulfur vacancies on defective CoS2-x NCs leads to the full-hydrogenated hydrocinnamyl alcohol with 92.1% selectivity. A cross-coupling of carbon and hydrogen radicals may be involved in this electrochemical hydrogenation reaction. Furthermore, this selective hydrogenation method is also effective for other α, β-unsaturated aldehydes, illustrating the universality of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.